题目内容
【题目】如图所示,在△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F.
(1)求证:AC=2BF
(2)连接DF,求证:AB垂直平分DF
(3)连接AF,试判断△ACF的形状,并说明理由.
【答案】(1)证明见解析;(2)证明见解析;(3)等腰三角形,理由见解析.
【解析】
(1)易证∠CDA=∠F,即可证明△ACD≌△CBF,可得CD=BF,易证AC=2CD,即可解题;
(2)连接DF交AB于G点,易证BD=BF,∠ABC=45°,根据△ACD≌△CBF,可求得∠ABF=45°,即可证明∴△DBG≌△FBG,可得DG=FG,∠DGB=∠FGB,即可求得∠DGB=∠FGB=90°,即可解题;
(3)由△CBF≌△ACD,得出CF=AD,由AB垂直平分DF,得出AF=AD,证得CF=AF,即可得出结论.
证明:(1)∵BF∥AC,且∠ACB=90°
∴BC⊥BF,
又∵CF⊥AD
∴∠DCE+∠F=90°,∠DCE+∠CDA=90°,
∴∠CDA=∠F,
在△ACD和△CBF中, ,
∴△ACD≌△CBF(AAS),
∴CD=BF,
∵点D是BC的中点,
∴AC=BC=2CD,
∴AC=2BF;
(2)连接DF交AB于G点,
∵点D是BC的中点,
∴AC=2BD,
∵AC=2BF,
∴BD=BF,
∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵△ACD≌△CBF,
∴∠CBF=∠ACD=90°,
∴∠ABF=45°,
在△DBG和△FBG中,,
∴△DBG≌△FBG(SAS),
∴DG=FG,∠DGB=∠FGB,
∵∠DGB+∠FGB=180°,
∴∠DGB=∠FGB=90°,
∴AB垂直平分DF;
(3)连接AF
由(1)知:△CBF≌△ACD,
∴CF=AD,
由(2)知:AB垂直平分DF,
∴AF=AD,
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.