题目内容
【题目】如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的最小值为 .
【答案】
【解析】解:作点M关于AB的对称点N,过N作NQ⊥AC于Q交AB于P,
则NQ的长即为PM+PQ的最小值,
连接MN交AB于D,则MD⊥AB,DM=DN,
∵∠NPB=∠APQ,
∴∠N=∠BAC=30°,
∵∠BAC=30°,AM=2,
∴MD= AM=1,
∴MN=2,
∴NQ=MNcos∠N=2× = ,
所以答案是: .
【考点精析】本题主要考查了轴对称-最短路线问题的相关知识点,需要掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径才能正确解答此题.
练习册系列答案
相关题目