题目内容
【题目】菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k= ;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)(﹣,3)(2) (3)(,)或(﹣,5)或(,﹣)
【解析】
(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.
(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;
(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.
(1)x2﹣9x+18=0,
(x﹣3)(x﹣6)=0,
x=3或6,
∵CD>DE,
∴CD=6,DE=3,
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC==3,
∴∠DCA=30°,∠EDC=60°,
Rt△DEM中,∠DEM=30°,
∴DM=DE=,
∵OM⊥AB,
∴S菱形ABCD=ACBD=CDOM,
∴=6OM,OM=3,
∴D(﹣,3);
(2)∵OB=DM=,CM=6﹣=,
∴B(,0),C(,3),
∵H是BC的中点,
∴H(3,),
∴k=3×=;
故答案为:;
(3)
①∵DC=BC,∠DCB=60°,
∴△DCB是等边三角形,
∵H是BC的中点,
∴DH⊥BC,
∴当Q与B重合时,如图1,四边形CFQP是平行四边形,
∵FC=FB,
∴∠FCB=∠FBC=30°,
∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,
∴AB⊥BF,CP⊥AB,
Rt△ABF中,∠FAB=30°,AB=6,
∴FB=2=CP,
∴P(,);
②
如图2,∵四边形QPFC是平行四边形,
∴CQ∥PH,
由①知:PH⊥BC,
∴CQ⊥BC,
Rt△QBC中,BC=6,∠QBC=60°,
∴∠BQC=30°,
∴CQ=6,
连接QA,
∵AE=EC,QE⊥AC,
∴QA=QC=6,
∴∠QAC=∠QCA=60°,∠CAB=30°,
∴∠QAB=90°,
∴Q(﹣,6),
由①知:F(,2),
由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);
③
如图3,四边形CQFP是平行四边形,
同理知:Q(﹣,6),F(,2),C(,3),
∴P(,﹣);
综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).
【题目】某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲 | 乙 | ||
购树苗数量 | 销售单价 | 购树苗数量 | 销售单价 |
不超过500棵时 | 800元/棵 | 不超过1000棵时 | 800元/棵 |
超过500棵的部分 | 700元/棵 | 超过1000棵的部分 | 600元/棵 |
设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元
(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;
(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?