题目内容
【题目】已知∠ABC=90°,D是直线AB边上的点,AD=BC
(1)如图1,点D在线段AB上,过点A作AF⊥AB,且AF=BD,连接DC、DF、CF,试判断△CDF的形状并说明理由;
(2)如图2,点D在线段AB的延长线上,点F在点A的左侧,其他条件不变,以上结论是否仍然成立?请说明理由.
【答案】(1)△CDF是等腰直角三角形,理由见解析;(2)成立,理由见解析.
【解析】
(1)根据题意先证明出△FAD和△DBC全等,然后得出DF=DC,进一步利用全等三角形性质以及等量代换求出∠FDC=90°,从而证明出△CDF是等腰直角三角形;
(2)根据题意先证明出△FAD和△DBC全等,然后得出DF=DC,进一步利用全等三角形性质以及等量代换求出∠FDC=90°,从而证明出△CDF是等腰直角三角形;
(1)△CDF是等腰直角三角形,理由如下:
∵AF⊥AB,
∴∠A=90°
在△FAD和△DBC中
∵..
∴△FAD≌△DBC(SAS),
∴∠1=∠3,DF=DC,
∵∠2+∠3=90°,
∴∠1+∠2=90°,
∴∠FDC=180°90°=90°,
又∵DF=DC,
∴△CDF是等腰直角三角形;
(2)仍然成立,理由如下:
∵AF⊥AB,
∴∠A=90°.
在△FAD和△DBC中
∵.
∴△FAD≌△DBC(SAS),
∴∠1=∠3,DF=DC,
∵∠2+∠3=90°,
∴∠1+∠2=90°,即∠FDC=90°,
又∵DF=DC,
∴△CDF是等腰直角三角形.
【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.
【答案】 .
【解析】试题分析:
根据题意列表如下,由表可以得到所有的等可能结果,再求出所有结果中,两次所摸到小球的数字之和为4的次数,即可计算得到所求概率.
试题解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16种等可能事件,其中两次摸到的小球数字之和等于4的有(3,1)、(2,2)和(1,3),共计3种,
∴P(两次摸到小球的数字之和等于4)=.
【题型】解答题
【结束】
23
【题目】小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.