题目内容
【题目】在平面直角坐标系xOy中,直线l1:y=k1x+2与x轴、y轴分别交于点A、B两点,OA=OB,直线l2:y=k2x+b经过点C(1,﹣),与x轴、y轴和线段AB分别交于点E、F、D三点.
(1)求直线l1的解析式;
(2)如图①:若EC=ED,求点D的坐标和△BFD的面积;
(3)如图②:在坐标轴上是否存在点P,使△PCD是以CD为底边的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
【答案】(1);(2)D(3,),面积为6;(3)存在,满足条件的点P坐标为(0,4﹣6)或(2,0),理由见解析
【解析】
(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)如图1中,作CM⊥OA于M,DN⊥CA于N.由△CME≌△DNE(AAS),推出CM=DN由C(1,﹣),可得CM=DN=,再利用待定系数法即可解决问题;
(3)分点P在y轴或x轴两种情形分别求解即可解决问题;
解:(1)∵直线y=k1x+2与y轴B点,
∴B(0,2),
∴OB=2,
∵OA=OB=6,
∴A(6,0),
把A(6,0)代入y=k1x+2得到,k1=﹣,
∴直线l1的解析式为y=﹣x+2.
(2)如图1中,作CM⊥OA于M,DN⊥CA于N.
∵∠CME=∠DNE=90°,∠MEC=∠NED,EC=DE,
∴△CME≌△DNE(AAS),
∴CM=DN
∵C(1,﹣),
∴CM=DN=,
当y=时,=﹣x+2,
解得x=3,
∴D(3,),
把C(1,﹣),D(3,)代入y=k2x+b,得到,
解得,
∴直线CD的解析式为y=x﹣2,
∴F(0,﹣2),
∴S△BFD=×4×3=6.
(3)①如图③﹣1中,当PC=PD,∠CPD=90°时,作DM⊥OB于M,CN⊥y轴于N.设P(0,m).
∵∠DMP=∠CNP=∠CPD=90°,
∴∠CPN+∠PCN=90°,∠CPN+∠DPM=90°,
∴∠PCN=∠DPM,
∵PD=PC,
∴△DMP≌△NPC(AAS),
∴CN=PM=1,PN=DM=m+,
∴D(m+,m+1),
把D点坐标代入y=﹣x+2,得到:m+1=﹣(m+)+2,
解得m=4﹣6,
∴P(0,4﹣6).
②如图③﹣2中,当PC=PC,∠CPD=90时,作DM⊥OA于M,CN⊥OA于N.设P(n,0).
同法可证:△AMD≌△PNC,
∴PM=CN=,DM=PN=n﹣1,
∴D(n﹣,n﹣1),
把D点坐标代入y=﹣x+2,得到:n﹣1=﹣(n﹣)+2,
解得n=2
∴P(2,0).
综上所述,满足条件的点P坐标为(0,4﹣6)或(2,0)
【题目】小李在某商场购买两种商品若干次(每次商品都买) ,其中前两次均按标价购买,第三次购买时,商品同时打折.三次购买商品的数量和费用如下表所示:
购买A商品的数量/个 | 购买B商品的数量/个 | 购买总费用/元 | |
第一次 | |||
第二次 | |||
第三次 |
(1)求商品的标价各是多少元?
(2)若小李第三次购买时商品的折扣相同,则商场是打几折出售这两种商品的?
(3)在(2)的条件下,若小李第四次购买商品共花去了元,则小李的购买方案可能有哪几种?