题目内容
【题目】如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1 cm)(参考数据:sin15°≈0.26,cos15°≈0.97, tan15°≈0.27, ≈1.414)
【答案】解:过O点作OD⊥AB交AB于D点.
在Rt△ADO中,
∵∠A=15°,AO=30,
∴OD=AOsin15°≈30×0.26=7.8(cm)
AD=AOcos15°≈30×0.97=29.1(cm)
又∵在Rt△BDO中,∠OBC=45°,
∴BD=OD=7.8(cm),
∴AB=AD+BD≈36.9(cm).
答:AB的长度为36.9cm.
【解析】根据角的度数,以及提供的数据构造直角三角形过O点作OD⊥AB交AB于D点,则AB=AD+BD=AD+OD,即要求出AD和OD,在Rt△BDO中,∠A=15°,AO=30,可求得AD和OD.
练习册系列答案
相关题目