题目内容

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.

(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.

【答案】
(1)证明:如图,

连接OD.

∵AB=AC,

∴∠B=∠C,

∵OD=OC,

∴∠ODC=∠C,

∴∠ODC=∠B,

∴OD∥AB,

∵DF⊥AB,

∴OD⊥DF,

∵点D在⊙O上,

∴直线DF与⊙O相切;


(2)解:∵四边形ACDE是⊙O的内接四边形,

∴∠AED+∠ACD=180°,

∵∠AED+∠BED=180°,

∴∠BED=∠ACD,

∵∠B=∠B,

∴△BED∽△BCA,

=

∵OD∥AB,AO=CO,

∴BD=CD= BC=3,

又∵AE=7,

=

∴BE=2,

∴AC=AB=AE+BE=7+2=9.


【解析】(1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,再证明DF⊥OD,即查得到DF为⊙O的切线;
(2)四边形ACDE是⊙O的内接四边形,∠BED=∠ACD,∠B=∠B,证得△BED∽△BCA,再由相似三角形的性质求得BE的值,最后即可求得AC的长.
【考点精析】本题主要考查了切线的判定定理和相似三角形的判定与性质的相关知识点,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网