题目内容
【题目】菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为( )
A. 1 B. 3 C. D. +1
【答案】B
【解析】
过点C作CE⊥AB,根据题意可求出AB,CD的距离即CE的长,由BD平分∠ABD,则作点P关于BD的对称点P',则当P',K,Q三点共线,且垂直于AB时,PK+QK有最小值,即最小值为CE的长.
解:
如图:过点C作CE⊥AB
∵菱形ABCD中,AB=2,∠A=120°
∴∠ABC=60°,BC=2,BD平分∠ABD
∴BE=,CE=BE=3
∵BD平分∠ABD
∴在AB上作点P关于BD的对称点P'
∴PK+QK=P'K+KQ
∴当P',K,Q三点共线且P'Q⊥AB时,PK+QK有最小值,
即最小值为平行线AB,CD的距离,则最小值为3
故选:B.
练习册系列答案
相关题目
【题目】“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受人们的喜欢,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,2016年经过改造升级后A型车每辆销售价比2015年增加400元,若2016年6月份与2015年6月份卖出的A型车数量相同,则2016年6月份A型车销售总额将比2015年6月份销售总额增加25%.
(1)求2016年6月份A型车每辆销售价为多少元(用列方程的方法解答);
(2)该车行计划2016年7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,A,B两种型号车的进货和销售价格如下表:
A型车 | B型车 | |
进货价格/(元/辆) | 1100 | 1400 |
销售价格/(元/辆) | 2016年的销售价格 | 2400 |
应如何进货才能使这批车获利最多?