题目内容
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:过B作⊙O的直径BM,连接AM;由圆周角定理可得:①∠C=∠AMB,②∠MAB=∠CDB=90°;由上述两个条件可知:∠CBD和∠MBA同为等角的余角,所以这两角相等,求出∠MBA的正切值即可;
过A作AB的垂线,设垂足为E,由垂径定理易求得BE的长,即可根据勾股定理求得OE的长,已知∠MBA的对边和邻边,即可求得其正切值,由此得解.
过A作AB的垂线,设垂足为E,由垂径定理易求得BE的长,即可根据勾股定理求得OE的长,已知∠MBA的对边和邻边,即可求得其正切值,由此得解.
解答:
解:过B作⊙O的直径BM,连接AM;
则有:∠MAB=∠CDB=90°,∠M=∠C;
∴∠MBA=∠CBD;
过O作OE⊥AB于E;
Rt△OEB中,BE=
AB=4,OB=5;
由勾股定理,得:OE=3;
∴tan∠MBA=
=
;
因此tan∠CBD=tan∠MBA=
,故选D.
则有:∠MAB=∠CDB=90°,∠M=∠C;
∴∠MBA=∠CBD;
过O作OE⊥AB于E;
Rt△OEB中,BE=
| 1 |
| 2 |
由勾股定理,得:OE=3;
∴tan∠MBA=
| OE |
| BE |
| 3 |
| 4 |
因此tan∠CBD=tan∠MBA=
| 3 |
| 4 |
点评:此题主要考查了圆周角定理、垂径定理、勾股定理的综合应用能力;能够将已知和所求的条件构建到同一个直角三角形中,是解答此题的关键.
练习册系列答案
相关题目
| A、0.6 | B、0.8 | C、0.5 | D、1.2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|