题目内容
【题目】如图,已知抛物线y1=﹣x2+1,直线y2=﹣x+1,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=2时,y1=﹣3,y2=﹣1,y1<y2,此时M=﹣3.下列判断中:
①当x<0或x>1时,y1<y2;
②当x<0时,M=y1;
③使得M=的x的值是﹣或;
④对任意x的值,式子=1﹣M总成立.
其中正确的是_____(填上所有正确的结论)
【答案】①②③④
【解析】①观察图象可知,当x<0或x>1时,y1<y2,故①正确,
②观察图象可知:当x<0时,M=y1,故②正确,
③M=时, =﹣x2+1,解得x=﹣或(舍去),
=﹣x+1,解得x=,
∴x的值是﹣或,故③正确,
④观察图象可知:M≤1,对任意x的值,式子=1﹣M总成立,故④正确,
故答案为:①②③④.
练习册系列答案
相关题目