题目内容

在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA为半径的圆弧与BC相切于点D,交AC于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)已知AE=2,DC=,求圆弧的半径.
(1)根据切线的性质可得OD⊥BC,即得∠ODB=∠C=90°,则可得OD∥AC,根据平行线的性质可得∠ODA=∠CAD,根据圆的基本性质可得∠ODA=∠OAD,问题得证;(2)2

试题分析:(1)根据切线的性质可得OD⊥BC,即得∠ODB=∠C=90°,则可得OD∥AC,根据平行线的性质可得∠ODA=∠CAD,根据圆的基本性质可得∠ODA=∠OAD,问题得证;
(2)过O作OH⊥AC于H,根据垂径定理可得,由OD∥AC,OH⊥AC,∠C=90°可求得OH=DC=,在Rt△ABC中,根据勾股定理即可求得结果.
(1)∵OA为半径的圆弧与BC相切于点D
∴OD⊥BC
∴∠ODB=∠C=90°
∴OD∥AC
∴∠ODA=∠CAD
又∵OA=OD
∴∠ODA=∠OAD
∴∠CAD=∠OAD
∴AD平分∠BAC;
(2)过O作OH⊥AC于H


∵OD∥AC,OH⊥AC,∠C=90°,
∴OH=DC=
∴在Rt△ABC中,圆弧的半径OA=
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网