题目内容
【题目】如图,菱形ABCD中,∠B=60°,AB=3cm,过点A作∠EAF=60°,分别交DC,BC的延长线于点E,F,连接EF.
(1)如图1,当CE=CF时,判断△AEF的形状,并说明理由;
(2)若△AEF是直角三角形,求CE,CF的长度;
(3)当CE,CF的长度发生变化时,△CEF的面积是否会发生变化,请说明理由.
【答案】(1) △AEF是等边三角形,证明见解析;(2) CF=,CE=6或CF=6,CE=;(3) △CEF的面积不发生变化,理由见解析.
【解析】
(1)证明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,证明△ABE≌△ADF(SAS),得出AE=AF,即可得出结论;
(2)分两种情况:①∠AFE=90°时,连接AC、MN,证明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,证出△AMN是等边三角形,得出AM=MN=AN,设AM=AN=MN=m,DN=CM=b,BM=CN=a,证明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性质得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;
②∠AEF=90°时,同①得出CE=AD=,CF=2AB=6;
(3)作FH⊥CD于H,如图4所示:由(2)得BM=CN=a,CM=DN=b,证明△ADN∽△FCN,得出,由平行线得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函数得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出结论.
解:(1)△AEF是等边三角形,理由如下:
连接BE、DF,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC=DC=AD,∠ABC=∠ADC,
在△BCE和△DCF中,,
∴△BCE≌△DCF(SAS),
∴∠BE=DF,CBE=∠CDF,
∴∠ABC+∠CBE=∠ADC+∠CDF,
即∠ABE=∠ADF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,又∵∠EAF=60°,
∴△AEF是等边三角形;
(2)分两种情况:
①∠AFE=90°时,连接AC、MN,如图2所示:
∵四边形ABCD是菱形,
∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,
∴△ABC和△ADC是等边三角形,
∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,
∴∠MAC=∠NAD,
在△MAC和△NAD中,,
∴△MAC≌△NAD(ASA),
∴AM=AN,CM=DN,
∵∠EAF=60°,
∴△AMN是等边三角形,
∴AM=MN=AN,
设AM=AN=MN=m,DN=CM=b,BM=CN=a,
∵CF∥AD,
∴△CFN∽△DAN,
∴,
∴FN=,
∴AF=m+,
同理:AE=m+,
在Rt△AEF中,∵∠EAF=60°,
∴∠AEF=30°,
∴AE=2AF,
∴m+=2(m+),
整理得:b2﹣ab﹣2a2=0,
(b﹣2a)(b+a)=0,
∵b+a≠0,
∴b﹣2a=0,
∴b=2a,
∴=,
∴CF=AD=,
同理:CE=2AB=6;
②∠AEF=90°时,连接AC、MN,如图3所示:
同①得:CE=AD=,CF=2AB=6;
(3)当CE,CF的长度发生变化时,△CEF的面积不发生变化;理由如下:
作FH⊥CD于H,如图4所示:
由(2)得:BM=CN=a,CM=DN=b,
∵AD∥CF,
∴△ADN∽△FCN,
∴,
∵CE∥AB,
∴∠FCH=∠B=60°,△CEM∽△BAM,
∴,
∴,
∴CF×CE=AD×AB=3×3=9,
∵CH=CF×sin∠FCH=CF×sin60°=CF,
△CEF的面积=CE×FH=CE×CF=×9×=,∴△CEF的面积是定值,不发生变化.
【题目】二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y=ax2+bx+c | … | t | m | -2 | -2 | n | … |
根据以上列表,回答下列问题:
(1)直接写出c的值和该二次函数图象的对称轴;
(2)写出关于x的一元二次方程ax2+bx+c=t的根;
(3)若m=-1,求此二次函数的解析式.