题目内容
如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有( )
A. 2个 B. 3个 C. 4个 D. 5个
A. 2个 B. 3个 C. 4个 D. 5个
C
试题分析:根据等腰三角形的判定,运用直角三角形的两个锐角互余和角平分线的性质,证得∠CAD=∠BAD=30°,
CD=ED,AC=AE,即△ABD、△CDE、△ACE、△BCE是等腰三角形.
解:∵∠ACB=90°,∠B=30°,
∴∠BAC=60°,
∵AD是角平分线,
∴∠CAD=∠BAD=30°,
∴AD=BD.
∴△ABD是等腰三角形.
∵AD是角平分线,∠ACB=90°,DE⊥AB,
∴CD=ED
∴AC=AE
∴△CDE、△ACE是等腰三角形;
又△CEB也是等腰三角形
显然此图中有4个等腰三角形.
故选C.
点评:本题考查了等腰三角形的判定;要综合运用直角三角形的两个锐角互余和角平分线的性质,找到相等的线段,来判定等腰三角形.
练习册系列答案
相关题目