题目内容
【题目】数学实验室:
制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.
探索研究:
(1)小明将“弦图”中的2个三角形进行了运动变换,得到图3,请利用图3证明勾股定理;
数学思考:
(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)通过图形的面积的两种计算方法,即可得出结果;
(2)通过大正方形面积的两种计算方法,即可得出结果.
(1)解:如图3所示,
图形的面积表示为:,
图形的面积也可表示:,
∴a2b2abc2ab,
∴a2b2c2
(2)解:如图4所示,
大正方形的面积表示为:ab2,
大正方形的面积也可以表示为:,
∴,
∴a2b22abc22ab,
∴a2b2c2;
练习册系列答案
相关题目
【题目】某村为了尽早摆脱贫穷落后的现状,积极响应国家号召,15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公顷需要人数和投入资金如下表:
作物种类 | 每公顷所需人数/人 | 每公顷投入资金/万元 |
蔬菜 | 4 | 2 |
水果 | 5 | 3 |
在现有条件下,这15位村民应承包多少公顷土地,怎样安排能使每人都有事可做,并且资金正好够用?