题目内容
【题目】如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2 , 当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是 .
【答案】3
【解析】解:如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,
利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,
∵线段AB=10,AC=BD=2,当P与C重合时,
以AP、PB为边向上、向下作正方形APEF和PHKB,
∴AP=2,BP=8,
则O1P= ,O2P=4
,
∴O2P=O2B=4 ,
当P′与D重合,则P′B=2,则AP′=8,
∴O′P′=4 ,O″P′=
,
∴H′O″=BO″= ,
∴O2O″=4 ﹣
=3
.
故答案为:3 .
根据正方形的性质以及勾股定理即可得出正方形对角线的长,进而得出线段O1O2中点G的运动路径的长.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
时间t(秒) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | … |
行驶距离s(米) | 0 | 2.8 | 5.2 | 7.2 | 8.8 | 10 | 10.8 | … |
假设这种变化规律一直延续到汽车停止.
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止? ②当t分别为t1 , t2(t1<t2)时,对应s的值分别为s1 , s2 , 请比较 与
的大小,并解释比较结果的实际意义.