题目内容
【题目】如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
利用正方形的性质进行等角转换,正方形ABCD的对角线AC与BD相交于点O,AC⊥BD,∠COM+∠MOB=∠BON+∠MOB=90°,∠COM=∠BON,OB=OC,∠OBN=∠OCM=45°,△ONB≌△OMC,得NB=MC,又BC=CD,∠DCM=∠CBN=90°,故△CNB≌△DMC
解:∵正方形ABCD的对角线AC与BD相交于点O
∴AC⊥BD,∠COM+∠MOB=∠BON+∠MOB=90°
∴∠COM=∠BON,OB=OC,∠OBN=∠OCM=45°
∴△ONB≌△OMC
∴NB=MC
又∵BC=CD,∠DCM=∠CBN=90°
∴△CNB≌△DMC
∴③结论正确;
由△CNB≌△DMC,得出∠BCN=∠CDM
又∠CDM+∠CMD=90°
∴∠BCN+∠CMD=90°
∴CN⊥DM
故②结论正确.
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现, 销售量y(件)与销售单价x(元)符合一次函数,所调查的部分数据如表:
销售单价x(元) | 65 | 70 | 80 | … |
销售量y(件) | 55 | 50 | 40 | … |
(1)求出y与x之间的函数表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?
(3)销售单价定为多少元时,该商场获得的利润恰为500元?