题目内容
【题目】如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是( ) .
①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.
A.①②③
B.①③
C.①②④
D.①②③④
【答案】C
【解析】解:①∵F是AD的中点,
∴AF=FD,∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此选项正确;
②延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;
③∵EF=FM,
∴S△EFC=S△CFM ,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△EFC错误;
④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确.
故选C.
【考点精析】根据题目的已知条件,利用平行四边形的性质的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了了解某地七年级男生的身高情况,从当地某学校选取了一个容量为60的样本,60名男生的身高(单位:cm)情况如下表所示(尚不完整),则表中a,b的值分别为( )
分组 | 147.5~157.5 | 157.5~167.5 | 167.5~177.5 | 177.5~187.5 |
频数 | 10 | 26 | a | |
百分比 | 30% | b |
A. 18,6 B. 30%,6 C. 18,10% D. 0.3,10%