题目内容
如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
(1)∵抛物线与y轴交于点C(0,3),
∴设抛物线解析式为y=ax2+bx+3(a≠0),
根据题意,得
,
解得
,
∴抛物线的解析式为y=-x2+2x+3.
(2)存在.
由y=-x2+2x+3得,D点坐标为(1,4),对称轴为x=1.
①若以CD为底边,则PD=PC,
设P点坐标为(x,y),根据两点间距离公式,
得x2+(3-y)2=(x-1)2+(4-y)2,
即y=4-x.
又P点(x,y)在抛物线上,
∴4-x=-x2+2x+3,
即x2-3x+1=0,
解得x1=
,x2=
<1,应舍去,
∴x=
,
∴y=4-x=
,
即点P坐标为(
,
).
②若以CD为一腰,
∵点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,
此时点P坐标为(2,3).
∴符合条件的点P坐标为(
,
)或(2,3).
(3)由B(3,0),C(0,3),D(1,4),根据勾股定理,
得CB=3
,CD=
,BD=2
,
∴CB2+CD2=BD2=20,
∴∠BCD=90°,
设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中,
∵CF=DF=1,
∴∠CDF=45°,
由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),
∴DM∥BC,
∴四边形BCDM为直角梯形,
由∠BCD=90°及题意可知,
以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;
以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在.
综上所述,符合条件的点M的坐标为(2,3).
∴设抛物线解析式为y=ax2+bx+3(a≠0),
根据题意,得
|
解得
|
∴抛物线的解析式为y=-x2+2x+3.
(2)存在.
由y=-x2+2x+3得,D点坐标为(1,4),对称轴为x=1.
①若以CD为底边,则PD=PC,
设P点坐标为(x,y),根据两点间距离公式,
得x2+(3-y)2=(x-1)2+(4-y)2,
即y=4-x.
又P点(x,y)在抛物线上,
∴4-x=-x2+2x+3,
即x2-3x+1=0,
解得x1=
3+
| ||
2 |
3-
| ||
2 |
∴x=
3+
| ||
2 |
∴y=4-x=
5-
| ||
2 |
即点P坐标为(
3+
| ||
2 |
5-
| ||
2 |
②若以CD为一腰,
∵点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,
此时点P坐标为(2,3).
∴符合条件的点P坐标为(
3+
| ||
2 |
5-
| ||
2 |
(3)由B(3,0),C(0,3),D(1,4),根据勾股定理,
得CB=3
2 |
2 |
5 |
∴CB2+CD2=BD2=20,
∴∠BCD=90°,
设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中,
∵CF=DF=1,
∴∠CDF=45°,
由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),
∴DM∥BC,
∴四边形BCDM为直角梯形,
由∠BCD=90°及题意可知,
以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;
以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在.
综上所述,符合条件的点M的坐标为(2,3).
练习册系列答案
相关题目