题目内容
【题目】如图所示,在△ABC中,C90,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EHAB于点H,连结BE.
(1)求证:BCBH;
(2)若AB5,AC4,求CE的长.
【答案】(1)见解析 (2)
【解析】
(1)连接OE,如图,根据切线的性质得到OE⊥AC,则可证明∠1=∠3,然后证明Rt△BEH≌Rt△BEC得到结论;
(2)利用勾股定理计算出BC=3,求解,设CEx,则EHx,AE4x.在Rt△AEH中,由勾股定理可得答案.
(1)证明:如图,连结OE.
∵OEOB,∴12
∵AC与⊙O相切,
∴ACOE,
∵BCAC,∴OE//BC,
∴23,
C90,EHAB,
∴△BCE≌△BHE(AAS)
∴BCBH;
(2)解:设CEx,
△BCE≌△BHE,
则EHx,AE4x.在Rt△ABC中,由勾股定理得:
由(1)可知:BHBC3,
∴AHABBH532.
在Rt△AEH中,由勾股定理得:,
,解之得:.
.
练习册系列答案
相关题目
【题目】苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.
时间(小时) | 频数(人数) | 频率 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合计 | 1 |
(1)a= ,b= ;
(2)补全频数分布直方图;
(3)请估计该校1 500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.