题目内容
【题目】已知百合酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.
(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?
(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;
(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.
【答案】(1)8间,13间 (2) (3)不是;三人客房16间,双人客房1间时费用最低,最低费用为5100元.
【解析】
(1)设三人间有间,双人间有间.注意凡团体入住一律五折优惠,根据①客房人数=50;②住宿费6300 列方程组求解;
(2)根据题意,三人间住了人,则双人间住了()人,住宿费=100×三人间的人数+150×双人间的人数;
(3)根据的取值范围及实际情况,运用函数的性质解答.
(1)设三人间有间,双人间有间,
根据题意得:,
解得:,
答:租住了三人间8间,双人间13间;
(2)根据题意,三人间住了人,住宿费每人100元,则双人间住了()人,住宿费每人150元,
∴;
(3)因为,所以随的增大而减小,
故当满足、为整数,且最大时,
即时,住宿费用最低,
此时,
答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.
所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.
练习册系列答案
相关题目