题目内容
【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得168元的销售利润,销售价应定为多少?
【答案】(1)y与x之间的函数关系式y=-2x+60(10≤x≤18);(2)当销售价为18元时,每天的销售利润最大,最大利润是192元;(3)该经销商想要每天获得168元的销售利润,销售价应定为16元.
【解析】(1)根据题意,设一次函数的解析式为y=kx+b,代入图中的两组已知的点的坐标(10,40),(18,24),利用消元法解二元一次方程组得出k和b的值,即可得出一次函数的解析式。
(2)利根据利润等于一件的利润×件数,可以得到W关于x的表达式,然后根据二次函数的性质求解即可.
(3)将168代入二次函数的关系式,解一元二次方程即可,注意自变量x的取值范围。
(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得
, 解得,
∴y与x之间的函数关系式y=-2x+60(10≤x≤18);
(2)W=(x-10)(-2x+60)=-2x2+80x-600,
对称轴x=20,在对称轴的左侧y随着x的增大而增大,
∵10≤x≤18,∴当x=18时,W最大,最大为192.
即当销售价为18元时,每天的销售利润最大,最大利润是192元
(3)由168=-2x2+80x-600,
解得x1=16,x2=24(不合题意,舍去)
答:该经销商想要每天获得168元的销售利润,销售价应定为16元.