题目内容

【题目】如图,已知点A80),O为坐标原点,P是线段OA上任意一点(不含端点OA),过PO两点的二次函数y1和过PA两点的二次函数y2的图象开口均向下,它们的顶点分别为BC,射线OBAC相交于点D.当OD=AD=5时,这两个二次函数的最大值之和等于_______

【答案】3

【解析】

BBFOAF,过DDEOAE,过CCMOAM,则BF+CM是这两个二次函数的最大值之和,BFDECM,求出AE=OE=6DE=3.设P2x0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出,代入求出BFCM,相加即可求出答案.

BBFOAF,过DDEOAE,过CCMOAM

BFOADEOACMOA

BFDECM

OD=AD=5DEOA

OE=EA=OA=4

由勾股定理得:DE==3

P2x0),根据二次函数的对称性得出OF=PF=x

BFDECM

∴△OBF∽△ODE,△ACM∽△ADE

AM=PM=OA-OP=8-2x=4-x

解得:BF=xCM=3-x

BF+CM=3

故答案为3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网