题目内容
如图,为半圆的直径,延长到点,使,切半圆于点,点是弧AC上和点不重合的一点,则的度数为 .(圆的性质、切线的性质、解三角形)
连接OC,由切线的性质得OC⊥PC,于是易得Rt△OCP中,OC=OB=PB;利用30°所对的边等于斜边的一半,可得∠P=30°,于是得∠COP=60°,再由“同弧所对的圆周角等于它所对的圆心角的一半”得∠CDB=30度.
解:连接OC,
∵PC切半圆O于点C,
∴OC⊥PC,
∴OC=OB=PB,
∴∠P=30°,即∠COP=60°,
∴∠CDB=∠COP=30°.
解:连接OC,
∵PC切半圆O于点C,
∴OC⊥PC,
∴OC=OB=PB,
∴∠P=30°,即∠COP=60°,
∴∠CDB=∠COP=30°.
练习册系列答案
相关题目