题目内容
【题目】如图,四边形ABCD是边长为4的正方形,若AF=3,E为AB上一个动点,把△AEF沿着EF折叠,得到△PEF,若△BPE为直角三角形,则BP的长度为_____.
【答案】2或.
【解析】
根据题意可得分两种情况讨论:①当∠BPE=90°时,点B、P、F三点共线,②当∠PEB=90°时,证明四边形AEPF是正方形,进而可求得BP的长.
根据E为AB上一个动点,
把△AEF沿着EF折叠,得到△PEF,
若△BPE为直角三角形,
分两种情况讨论:
①当∠BPE=90°时,如图1,
点B、P、F三点共线,
根据翻折可知:
∵AF=PF=3,AB=4,
∴BF=5,
∴BP=BF﹣PF=5﹣3=2;
②当∠PEB=90°时,如图2,
根据翻折可知:
∠FPE=∠A=90°,
∠AEP=90°,
AF=FP=3,
∴四边形AEPF是正方形,
∴EP=3,BE=AB﹣AE=4﹣3=1,
∴BP===.
综上所述:BP的长为:2或.
故答案为:2或.
练习册系列答案
相关题目