题目内容
【题目】如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.
【答案】5
【解析】
根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.
解:∵CD切⊙O于点D,
∴∠ODC=90°;
又∵OA⊥OC,即∠AOC=90°,
∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;
∵OA=OD,
∴∠A=∠ADO,
∴∠ADC=∠AEO;
又∵∠AEO=∠DEC,
∴∠DEC=∠ADC,
∴CD=CE,
∵CE=5,
∴CD=5.
练习册系列答案
相关题目