题目内容
【题目】如图,一次函数 y=kx+b 的图象与坐标轴分别交于 A、B 两点,与反比例函数 y= 的图象在第一象限的交点为点 C,CD⊥x 轴,垂足为点 D,若OB=3,OD=6,△AOB 的面积为 3.
(1)求一次函数与反比例函数的解析式;
(2)直接写出当 x>0 时,kx+b﹣>0 的解集.
【答案】(1),;(2)0<x<6.
【解析】
试题(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;
(2)根据图象即可得出答案.
试题解析:(1)∵S△AOB=3,OB=3,∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2
∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是;
(2)当x>0时,<0的解集是0<x<6.
练习册系列答案
相关题目
【题目】夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 2台 | 3台 | 1130元 |
第二周 | 5台 | 6台 | 2510元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)分别求出A,B两种型号电风扇的销售单价;
(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.