题目内容
【题目】如图,在四边形ABCD中,BD为一条对角线,∠ABD=90°,AD∥BC, AD=2BC,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分∠BAD,BC=1,则AC的长为 .
【答案】(1)详见解析;(2)
【解析】
(1)由DE=BC,AD∥BC,推出四边形BCDE是平行四边形,再证明BE=ED即可解决问题;
(2)利用“直角三角形中,30°角所对的直角边等于斜边的一半”逆定理,求得,进而求得和,再利用勾股定理即可解答.
(1)证明:∵E为AD中点,AD=2BC ∴BC=ED
∵AD∥BC, ∴四边形BCDE是平行四边形
∵∠ABD=90°,AE=DE,∴ AD=2BE,
∴BE=ED ∴四边形BCDE是菱形
(2)
∵四边形BCDE是菱形,BC=1
∴AB=1 AD=2
∴
∵AC平分∠BAD
∴
∴
∴
【题目】某公司对一款新高压锅进行测试,放入足量的水和设定某一模式后,在容积不变的情况下,根据温度t(℃)的变化测出高压锅内的压强p(kpa)的大小.压强在加热前是100kpa,达到最大值后高压锅停止加热。为方便分析,测试员记y=p-100,
表示压强在测试过程中相对于100kpa的增加值.部分数据如下表:
温度f(℃) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | |
压强增加值 Y(kpa) | 0 | 9.5 | 18 | 25.5 | 32 | 37.5 | 42 |
(1)根据表中的数据,在给出的坐标系中画出相应的点(坐标系已画在答卷上);
(2)y与t之问是否存在函数关系?若是,请求出函数关系式;否则请说明理由;
(3)①在该模式下,压强P的最大值是多少?
②当t分别为,t1,t2(t1<t2)时,对应y的值分别为y1 ,y2 , 请比较与的大小,并解释比较结果的实际意义.
【题目】小华根据学习函数的经验,对函数的图象与性质进行了研究,下面是小华的研究过程,请补充完成.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
4 | 5 | ||||||||
m | 2 | 1 | 0 | n | 2 | 3 |
其中,m= ,n= ;
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出该函数的图象;
(3)观察图象,写出该函数的两条性质;
(4)进一步研究函数图象发现:
①方程有 个实数根;
②不等式的解集为 .