题目内容

【题目】1是一个小朋友玩滚铁环的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25 cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为AMOA=α,且sinα=

(1)求点M离地面AC的高度BM

(2)设人站立点C与点A的水平距离AC=55 cm,求铁环钩MF的长度.

【答案】(1)BM=5cm;(2)MF=50cm.

【解析】

(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;

(2)因为∠MOH+OMH=OMH+FMN=90°,FMN=MOH,又因为sinMOA=,所以可得出FNFM之间的数量关系,即FN=FM,再根据MN=HN-HM,利用勾股定理即可求出FM的长

M作与AC平行的直线,与OA、FC分别相交于H、N,

(1)在RtOHM中,∠OHM=90°,OM=25,

HM=OM×sinα=15,

所以OH=20,

MB=HA=25-20=5,

所以点M距地面的高度BM5cm;

(2)∵铁环钩与铁环相切,

∴∠MOH+OMH=OMH+FMN=90°,FMN=MOH,

=sinMOA=

FN=FM,

RtFMN中,∠FNM=90°,MN=BC=AC-AB=55-15=40,

FM2=FN2+MN2

FM2=(FM)2+402

解得:FM=50,

∴铁环钩的长度FM50cm.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网