题目内容

【题目】如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.
(1)求证:DF∥AO;
(2)若AC=6,AB=10,求CG的长.

【答案】
(1)证明:连接OD.

∵AB与⊙O相切与点D,又AC与⊙O相切与点,

∴AC=AD,∵OC=OD,

∴OA⊥CD,

∴CD⊥OA,

∵CF是直径,

∴∠CDF=90°,

∴DF⊥CD,

∴DF∥AO.


(2)过点作EM⊥OC于M,

∵AC=6,AB=10,

∴BC= =8,

∴AD=AC=6,

∴BD=AB﹣AD=4,

∵BD2=BFBC,

∴BF=2,

∴CF=BC﹣BF=6.OC= CF=3,

∴OA= =3

∵OC2=OEOA,

∴OE=

∵EM∥AC,

= = =

∴OM= ,EM= ,FM=OF+OM=

= = =

∴CG= EM=2.


【解析】(1)欲证明DF∥OA,只要证明OA⊥CD,DF⊥CD即可;(2)过点作EM⊥OC于M,易知 = ,只要求出EM、FM、FC即可解决问题;
【考点精析】掌握切线的性质定理是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网