题目内容
【题目】在△ABC中,AB=AC,点D是BC中点,∠EDF两边分别交线段AB于点E,交线段AC于点F,且∠EDF+∠BAC=180°
(1)如图1,当∠EDF=90°时,求证:BE=AF;
(2)如图2,当∠EDF=60°时,求证:AE+AF=AD;
(3)如图3,在(2)的条件下,连接EF并延长EF至点G,使FG=EF,连接CG,若BE=5,CF=4,求CG的长度.
【答案】(1)证明见解析;(2)证明见解析;(3)CG=.
【解析】
1)由等腰三角形的性质得出AD⊥BC,AD=BC=BD=CD,∠B=∠C=45°,∠DAF=∠BAC=45°,求出∠B=∠DAF,∠BDE=∠ADF,由ASA证明△BDE≌△ADF,即可得出结论;
(2)取AB的中点M,连接DM,由直角三角形的性质得出DM=AB=BM=AM,证出△ADM是等边三角形,得出AM=DM=AD,∠AMD=∠ADM=60°,证明△DEM≌△DFA,得出MD=AF,即可得出结论;
(3)作EH⊥BC于H,FM⊥BC于M,GN⊥BC于N,则EH∥FM∥GN,由(2)得:AE+AF=AD,由等腰三角形的性质得出∠B=∠ACB=30°,AD⊥BC,∠ADB=∠ADC=90°,由直角三角形的性质得出AD=AB,BD=CD=AD,EH=BE=,FM=CF=2,BH=EH=,CM=FM=2,求出AB=6,得出AD=3,BD=CD=3,∴DH=BDBH=,DM=CDCM=,求出HM=DH+DM=,证出FM是梯形EHNG的中位线,HM=MN,得出2FM=EH+GN,MN=,CN=CDDMMN=,求出GN=,在Rt△CGN中,由勾股定理即可求出CG的长.
(1)证明:连接AD,如图1所示:
∵∠EDF+∠BAC=180°,∠EDF=90°,
∴∠BAC=90°,
∵AB=AC,点D是BC中点,
∴AD⊥BC,AD=BC=BD=CD,∠B=∠C=45°,∠DAF=∠BAC=45°,
∴∠B=∠DAF,
∵∠EDF=90°,
∴∠BDE=∠ADF,
在△BDE和△ADF中,,
∴△BDE≌△ADF(ASA),
∴BE=AF;
(2)证明:取AB的中点M,连接DM,如图2所示:
∵AD⊥BC,M是AB的中点,
∴DM=AB=BM=AM,
∵∠EDF+∠BAC=180°,∠EDF=60°,
∴∠BAC=120°,
∵AB=AC,点D是BC中点,
∴∠BAD=∠CAD=∠BAC=60°,
∴△ADM是等边三角形,
∴AM=DM=AD,∠AMD=∠ADM=60°,
∴∠MDE=∠ADF,
在△DEM和△DFA中,,
∴△DEM≌△DFA(ASA),
∴MD=AF,
∵AE+ME=AM=AD,
∴AE+AF=AD;
(3)解:作EH⊥BC于H,FM⊥BC于M,GN⊥BC于N,如图3所示:
则EH∥FM∥GN,
由(2)得:AE+AF=AD,
∵BE=5,CF=4,AB+AC=BE+AE+AF+CF=BE+AD+CF=5+AD+4=9+AD,
∵∠BAC=120°,AB=AC,点D是BC中点,
∴∠B=∠ACB=30°,AD⊥BC,∠ADB=∠ADC=90°,
∴AD=AB
∴2AB=9+AB,
解得:AB=6,
∴AD=3,BD=CD=3,
∴DH=BD﹣BH=,DM=CD﹣CM=,
∴HM=DH+DM=,
∵EH∥FM∥GN,EF=FG,
∴FM是梯形EHNG的中位线,HM=MN,
∴2FM=EH+GN,MN=,CN=CD﹣DM﹣MN=3﹣﹣=,2×2=+GN,
∴GN=,
在Rt△CGN中,由勾股定理得:CG==.