题目内容
【题目】如图,AB是半圆O的直径,C是半圆上一个动点(不与点A,B重合),D是弦AC上一点,过点D作DE⊥AB,垂足为E,过点C作半圆O的切线,交ED的延长线于点F.
(1)求证:FC=FD.
(2)①当∠CAB的度数为 时,四边形OEFC是矩形;②若D是弦AC的中点,⊙O的半径为5,AC=8,则FC的长为 .
【答案】(1)见解析;(2)①45;② .
【解析】
(1)证明∠FDC=∠FCD,即可求解;
(2)①当∠CAB=45°时,∠COB=90°,即可求解;
②连接OD,过点F作FM⊥CD,垂足为M,设∠FDC=α,由D是弦AC的中点,则OD⊥AC,求出cosα=,继而根据FD=即可求解.
(1)∵FC是圆的切线,
∴∠FCD+∠ACO=90°,
∵FE⊥BA,∴∠ADC+∠CAO=90°,
而∠CAO=∠ACO,∠ADE=∠FDC,
∴∠FDC=∠FCD,
∴FC=FD;
(2)①当∠CAB=45°时,∠COB=90°,
则四边形OEFC是矩形,
故答案为:45;
②连接OD,过点F作FM⊥CD,垂足为M,
设∠FDC=α,
∵ FD=FC,∴DM=CD,
∵D是弦AC的中点,
∴OD⊥AC,AD=DC,
∴∠ADE+∠EDO=90°,
∵∠DEO=90°,
∴∠EDO+∠EOD=90°,
∴∠ADE=∠AOD=∠FDC=α,
∵AD=CD=AC=4,OA=5,
∴DO==3,
∴cosα=,
∴在△FDC中,FD==,
∴FC=.
【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E | F |
上学方式 | 电动车 | 私家车 | 公共交通 | 自行车 | 步行 | 其他 |
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.
(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.
(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.