题目内容
【题目】如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )
A.3
B.4
C.6
D.8
【答案】C
【解析】解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF, 由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,
∵∠ABE+∠EBF=∠C′BF+∠EBF=90°
∴∠ABE=∠C′BF
在△BAE和△BC′F中,
,
∴△BAE≌△BC′F(ASA),
∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,
△ABE和△BC′F的周长=2△ABE的周长=2×3=6.
由折叠特性可得CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,推出∠ABE=∠C′BF,所以△BAE≌△BC′F,根据△ABE和△BC′F的周长=2△ABE的周长求解.
练习册系列答案
相关题目