题目内容

【题目】如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.

(1)若∠ABC=60°,则∠ADC= °,∠AFD=°;
(2)BE与DF平行吗?试说明理由.

【答案】
(1)120;30
(2)

解:BE∥DF.理由如下:

∵BE平分∠ABC交CD于E,

∴∠ABE=∠ABC=×60°=30°,

∵∠AFD=30°;

∴∠ABE=∠AFD,

∴BE∥DF.


【解析】(1)根据四边形内角和为360°可计算出∠ADC=120°,再根据角平分线定义得到∠FDA=ADC=60°,然后利用互余可计算出∠AFD=30°;
(2)先根据BE平分∠ABC交CD于E得∠ABE=∠ABC=30°,而∠AFD=30°则∠ABE=∠AFD,于是可根据平行线的判定方法得到BE∥DF.
【考点精析】利用平行线的性质对题目进行判断即可得到答案,需要熟知两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网