题目内容
(本题满分10分)如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,
OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB= 10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.
OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB= 10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.
解:(1)连接OD. 设⊙O的半径为r.
∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.
∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等边三角形.
∴OD=DE.∵OD=OF,∴DE=OF.∴四边形OFDE是平行四边形.
∵OE=OF,∴平行四边形OFDE是菱形.
∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.
∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等边三角形.
∴OD=DE.∵OD=OF,∴DE=OF.∴四边形OFDE是平行四边形.
∵OE=OF,∴平行四边形OFDE是菱形.
略
练习册系列答案
相关题目