题目内容
【题目】观察以下等式:
第1个等式:23-22=13+2×1+1;
第2个等式:33-32=23+3×2+22;
第3个等式:43-42=33+4×3+32;
……
按照以上规律,解决下列问题:
(1)写出第4个等式:__________________;
(2)写出你猜想的第n个等式(用含n的等式表示),并证明.
【答案】(1);(2)猜想出第个等式为,证明见解析.
【解析】
(1)根据前三个等式归纳总结出规律即可得;
(2)先归纳总结出一般规律,得出第n个等式,再利用因式分解的方法分别计算等式的两边即可得证.
(1)由前三个等式可得:第4个等式为
故答案为:;
(2)猜想出第个等式为,证明如下:
等式的左边
等式的右边
则等式的左边等式的右边
所以等式成立.
练习册系列答案
相关题目
【题目】今年疫情防控期间,我市一家服装有限公司生产了一款服装,为对比分析以前实体商店和现在网上商店两种途径的销售情况,进行了为期30天的跟踪调查.其中实体商店的日销售量(百件)与时间(为整数,单位:天)的部分对应值如下表所示;网上商店的日销售量(百件)与时间(为整数,单位:天)的关系如图所示.
时间(天) | 0 | 6 | 10 | 12 | 18 | 20 | 24 | 30 |
日销售量(百件) | 0 | 72 | 100 | 108 | 108 | 100 | 72 | 0 |
(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数反映与的变化规律,并求出与的函数关系式及自变量的取值范围;
(2)求与的函数关系式,并写出自变量的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为(百件),求与的函数关系式;当为何值时,日销售量达到最大,并求出此时的最大值.