题目内容
【题目】如图,点A(a,1),B(b,3)都在双曲线y=﹣上,点P,Q分别是x轴,y轴上的动点,则四边形ABPQ周长的最小值为( )
A.4B.6C.2+2D.8
【答案】B
【解析】
先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于x轴的对称点D,B点关于y轴的对称点C,根据对称的性质得到C点坐标为(1,3),D点坐标为(-3,-1),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形ABPQ的周长最小,然后利用两点间的距离公式求解可得.
解:∵点A(a,1),B(b,3)都在双曲线y=﹣上,
∴a×1=3b=﹣3,
∴a=﹣3,b=﹣1,
∴A(﹣3,1),B(﹣1,3),
作A点关于x轴的对称点D(﹣3,﹣1),B点关于y轴的对称点C(1,3),连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,
∵QB=QC,PA=PD,
∴四边形ABPQ周长=AB+BQ+PQ+PA=AB+CD,
∴AB==2,CD==4,
∴四边形ABPQ周长最小值为2+4=6,
故选:B.
【题目】在5月31日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“关爱健康,远离香烟”的知识竞赛,两个年级分别有500人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100分)进行调查分析,过程如下:
第一步:收集数据
七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 79 77 94 96 75 92 67
八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 100 99 78 79 87 85 79
第二步:整理、描述数据
分数段 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
七年级人数 | 3 | 4 | 5 | 8 |
八年级人数 | 2 | 5 | 3 | 10 |
第三步:分析数据
年级 | 平均数 | 中位数 | 众数 | 满分率 | 方差 |
七年级 | 86 | 88 | 100 | 15% | 115.6 |
八年级 | 88.7 | 92 | a | 15% | 120 |
第四步:应用数据
(1)直接写出a的值和八年级抽取了多少个同学的成绩进行分析
(2)在此次测试中,七年级甲学生的成绩为89分,八年级乙学生成绩为90分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.
(3)若成绩在90分至99分之间(含90分,99分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.