题目内容

【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).

(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.

【答案】
(1)解:∵点A(1,n)在双曲线 上,

∴n=

又∵A(1, )在直线y= x+m上,

∴m=


(2)解:过点A作AM⊥x轴于点M.

∵直线 与x轴交于点B,

解得 x=﹣2.

∴点B的坐标为(﹣2,0).

∴OB=2,

∵点A的坐标为

∴AM= ,OM=1,

在Rt△AOM中,∠AMO=90°,

∴tan

∴∠AOM=60°,

由勾股定理,得 OA=2,

∴OA=OB,

∴∠OBA=∠BAO,

∴∠BAO= AOM=30°,

∴sin∠BAO=

∴∠BA0=30°.


【解析】(1)把点A(1,n)坐标代入 即可求得n,再把 坐标代入 可求m;(2)由直线 ,求得点B的坐标为(﹣2,0),即OB=2,由点A的坐标为 ,由三角函数可求得∠AOM=60°,由勾股定理求得得 OA=2,得到OA=OB,推出∠OBA=∠BAO,于是求得∠BAO=30°,由正弦函数的定义可得结论.

练习册系列答案
相关题目

【题目】设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.

观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是
(2)已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2
①求零点为x1 , x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网