题目内容
【题目】如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.
(1)求C点坐标;
(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.
(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.
【答案】(1) C(5,﹣4);(2)90°;(3)见解析.
【解析】(1)利用非负数的和为零,各项分别为零,求出a,b即可;
(2)用同角的余角相等和角平分线的意义即可;
(3)利用角平分线的意义和互余两角的关系简单计算证明即可.
(1)∵(a﹣3)2+|b+4|=0,
∴a﹣3=0,b+4=0,
∴a=3,b=﹣4,
∴A(3,0),B(0,﹣4),
∴OA=3,OB=4,
∵S四边形AOBC=16.
∴0.5(OA+BC)×OB=16,
∴0.5(3+BC)×4=16,
∴BC=5,
∵C是第四象限一点,CB⊥y轴,
∴C(5,﹣4);
(2)如图,
延长CA,∵AF是∠CAE的角平分线,
∴∠CAF=0.5∠CAE,
∵∠CAE=∠OAG,
∴∠CAF=0.5∠OAG,
∵AD⊥AC,
∴∠DAO+∠OAG=∠PAD+∠PAG=90°,
∵∠AOD=90°,
∴∠DAO+∠ADO=90°,
∴∠ADO=∠OAG,
∴∠CAF=0.5∠ADO,
∵DP是∠ODA的角平分线,
∴∠ADO=2∠ADP,
∴∠CAF=∠ADP,
∵∠CAF=∠PAG,
∴∠PAG=∠ADP,
∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°
即:∠APD=90°
(3)不变,∠ANM=45°理由:如图,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∵DM⊥AD,
∴∠ADO+∠BDM=90°,
∴∠DAO=∠BDM,
∵NA是∠OAD的平分线,
∴∠DAN=0.5∠DAO=0.5∠BDM,
∵CB⊥y轴,
∴∠BDM+∠BMD=90°,
∴∠DAN=0.5(90°﹣∠BMD),
∵MN是∠BMD的角平分线,
∴∠DMN=0.5∠BMD,
∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°
在△DAM中,∠ADM=90°,
∴∠DAM+∠DMA=90°,
在△AMN中,
∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,
∴D点在运动过程中,∠N的大小不变,求出其值为45°