题目内容

【题目】如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点当PC+PD最小时,∠PCD=( )°.

A.60°
B.45°
C.30°
D.15°

【答案】B
【解析】解:连接BD交MN于P′,如图,
∵MN是正方形ABCD的一条对称轴,
∴P′B=P′C,
∴P′C+P′D=P′B+P′D=BD,
∴此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,
∵点P′为正方形的对角线的交点,
∴∠P′CD=45°.
故选B.

【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对轴对称-最短路线问题的理解,了解已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网