题目内容
【题目】(1)操作发现:如图①,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接AE,则AE与BD有怎样的数量关系?说明理由.
(2)类比猜想:如图②,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边△CDE,连接AE,请直接写出AE与BD满足的数量关系,不必说明理由;
【答案】(1)AE=BD,理由见解析;(2)AE=BD.
【解析】
(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可以证得△BCD≌△ACE(SAS);然后由全等三角形的对应边相等知AE=BD
(2)通过证明△BCD≌△ACE(SAS),即可证明AE=BD.
解:(1)AE=BD,理由如下:
∵△ABC和△DCE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中,
,
∴△BCD≌△ACE(SAS),
∴AE=BD;
(2)AE=BD.
理由如下:∵△ABC和△DCE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△BCD和△ACE中,
,
∴△BCD≌△ACE(SAS),
∴AE=BD;
练习册系列答案
相关题目
【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:
… | … | ||||||
… | … |
根据上表填空:
①抛物线与轴的交点坐标是________和________;
②抛物线经过点,________;
③在对称轴右侧,随增大而________;
试确定抛物线的解析式.