题目内容
【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是( )
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大
【答案】C
【解析】解:设矩形ABCD中,AB=2a,AD=2b. ∵矩形ABCD的周长始终保持不变,
∴2(2a+2b)=4(a+b)为定值,
∴a+b为定值.
∵矩形对角线的交点与原点O重合
∴k= AB AD=ab,
又∵a+b为定值时,当a=b时,ab最大,
∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.
故选:C.
设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k= AB AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.
练习册系列答案
相关题目
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.