题目内容
【题目】如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的仰角∠EAB为15°,码头D的仰角∠EAD为45°,点C在线段BD的延长线上,AC⊥BC,垂足为C,求码头B、D的距离(结果保留整数).
【答案】解:∵AE∥BC,
∴∠ADC=∠EAD=45°
又∵AC⊥CD,
∴CD=AC=50m
∵AE∥BC
∴∠ABC=∠EAB=15°
∴BC= ≈185.2m,
∴BD=185.2﹣50≈135(米).
答:码头B、D的距离约为135米
【解析】根据AE∥BC,得到∠ADC=∠EAD=45°,再根据AC⊥CD,得到CD=AC=50,从而得到∠ABC=∠EAB=15°,然后求得BC的长即可求得BD的长.
【考点精析】本题主要考查了关于仰角俯角问题的相关知识点,需要掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能正确解答此题.
练习册系列答案
相关题目
【题目】温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,①根据信息填表:
A地 | B地 | C地 | 合计 | |
产品件数(件) | x | 2x | 200 | |
运费(元) | 30x |
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.