题目内容

【题目】如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.

(1)求圆的半径及圆心P的坐标;
(2)M为劣弧 的中点,求证:AM是∠OAB的平分线;
(3)连接BM并延长交y轴于点N,求N,M点的坐标.

【答案】
(1)解:∵O(0,0),A(0,﹣6),B(8,0),

∴OA=6,OB=8,

∴AB= =10,

∵∠AOB=90°,

∴AB为⊙P的直径,

∴⊙P的半径是5

∵点P为AB的中点,

∴P(4,﹣3)


(2)解:∵M点是劣弧OB的中点,

=

∴∠OAM=∠MAB,

∴AM为∠OAB的平分线


(3)解:连接PM交OB于点Q,如图,

=

∴PM⊥OB,BQ=OQ= OB=4,

在Rt△PBQ中,PQ= = =3,

∴MQ=2,

∴M点的坐标为(4,2);

∵MQ∥ON,

而OQ=BQ,

∴MQ为△BON的中位线,

∴ON=2MQ=4,

∴N点的坐标为(0,4).


【解析】本题考查了圆的综合题:熟练掌握垂径定理和圆周角定理;理解坐标与图形的性质,记住线段的中点坐标公式,会利用勾股定理计算线段的长.此类题目通常解由半径、弦心距和弦的一半所组成的直角三角形.(1)先利用勾股定理计算出AB=10,再利用圆周角定理的推理可判断AB为⊙P的直径,则得到⊙P的半径是5,然后利用线段的中点坐标公式得到P点坐标;(2)根据圆周角定理由 = ,∠OAM=∠MAB,于是可判断AM为∠OAB的平分线;(3)连接PM交OB于点Q,如图,先利用垂径定理的推论得到PM⊥OB,BQ=OQ= OB=4,再利用勾股定理计算出PQ=3,则MQ=2,于是可写出M点坐标,接着证明MQ为△BON的中位线得到ON=2MQ=4,然后写出N点的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网