题目内容

【题目】问题背景:已知在△ABC中,边AB上的动点D由A向B运动(与A,B不重合),同时点E由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点,求 的值.
(1)初步尝试
如图(1),若△ABC是等边三角形,DH⊥AC,且点D、E的运动速度相等,小王同学发现可以过点D作DG∥BC交AC于点G,先证GH=AH,再证GF=CF,
从而求得 的值为

(2)类比探究
如图(2),若△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是 :1,求 的值.

(3)延伸拓展
如图(3)若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记 =m,且点D、E的运动速度相等,试用含m的代数式表示 的值(直接写出果,不必写解答过程).

【答案】
(1)2
(2)

解:如图(2)过点D作DG∥BC交AC于点G,

则∠ADG=∠ABC=90°.

∵∠BAC=∠ADH=30°,

∴AH=DH,∠GHD=∠BAC+∠ADH=60°,

∠HDG=∠ADG﹣∠ADH=60°,

∴△DGH为等边三角形.

∴GD=GH=DH=AH,AD=GDtan60°= GD.

由题意可知,AD= CE.

∴GD=CE.

∵DG∥BC,

∴∠GDF=∠CEF.

在△GDF与△CEF中,

∴△GDF≌△CEF(AAS),

∴GF=CF.

GH+GF=AH+CF,即HF=AH+CF,

∴HF= AC=2,即


(3)

解: = .理由如下:

如图(3),过点D作DG∥BC交AC于点G,

易得AD=AG,AD=EC,∠AGD=∠ACB.

在△ABC中,∵∠BAC=∠ADH=36°,AB=AC,

∴AH=DH,∠ACB=∠B=72°,∠GHD=∠HAD+∠ADH=72°.

∴∠AGD=∠GHD=72°.

∵∠GHD=∠B=∠HGD=∠ACB,

∴△ABC∽△DGH.

∴GH=mD H=mA H.

由△ADG∽△ABC可得

∵DG∥BC,

∴FG=mFC.

∴GH+FG=m(AH+FC)=m(AC﹣HF),

即HF=m(AC﹣HF).

=


【解析】解:(1)过点D作DG∥BC交AC于点G,如图(1)所示:
∵△ABC是等边三角形,
∴△AGD是等边三角形,
∴AD=GD,
由题意知:CE=AD,
∴CE=GD
∵DG∥BC,
∴∠GDF=∠CEF,
在△GDF与△CEF中,
∴△GDF≌△CEF(AAS),
∴CF=GF,
∵DH⊥AG,
∴AH=GH,
∴AC=AG+CG=2GH+2GF=2(GH+GF),
HF=GH+GF,
=2;
故答案为:2;
(1)过点D作DG∥BC交AC于点G,由题意知△AGD是等边三角形,所以AD=GD,所以可以证明△GDF≌△CEF,所以CF=GF,由三线合一可知:AH=GH,即可得出所求答案;(2)过点D作DG∥BC交AC于点G,由点D,E的运动速度之比是 :1可知GD=CE,所以可以证明△GDF≌△CEF,所以CF=GF,由∠ABC=90°,∠ADH=∠BAC=30°可知:AH=DH,即可得出答案;(3)类似(1)(2)的方法可求出 =m和 =m,然后利用GH+FG=m(AH+FC)=m(AC﹣HF)即可求出 的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网