题目内容
【题目】为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共查了 名学生:
(2)请补全两幅统计图:
(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.
【答案】(1)200;(2)补图见解析;(3).
【解析】
(1)根据A类的人数和所占的百分比,即可求出总人数;
(2)用整体1减去A、C、D类所占的百分比,即可求出B所占的百分比;用总人数乘以所占的百分比,求出C的人数,从而补全图形;
(3)根据题意采用列举法,举出所有的可能,注意要做到不重不漏,再根据概率公式即可得出答案.
(1)调查的总学生是=200(名);
故答案为200.
(2)B所占的百分比是1-15%-20%-30%=35%,
C的人数是:200×30%=60(名),
补图如下:
(3)用A1,A2,A3表示3名喜欢毽球运动的学生,B表示1名跳绳运动的学生,
则从4人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共计6种,
选出的2人都是最喜欢毽球运动的学生有(A1,A2),(A1,A3),(A2,A3)共计3种,
则两人均是最喜欢毽球运动的学生的概率.
练习册系列答案
相关题目