题目内容
【题目】如图,直线y= x+2与双曲线y= 相交于点A(m,3),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.
【答案】
(1)解:把A(m,3)代入直线解析式得:3= m+2,即m=2,
∴A(2,3),
把A坐标代入y= ,得k=6,
则双曲线解析式为y= ;
(2)解:对于直线y= x+2,令y=0,得到x=﹣4,即C(﹣4,0),
设P(x,0),可得PC=|x+4|,
∵△ACP面积为3,
∴ |x+4|3=3,即|x+4|=2,
解得:x=﹣2或x=﹣6,
则P坐标为(﹣2,0)或(﹣6,0)
【解析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.
练习册系列答案
相关题目