题目内容
【题目】如图1是一种广场三联漫步机,其侧面示意图如图2所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求点D到地面的高度是多少?
【答案】D到地面的高度为(10+80)cm.
【解析】试题分析:首先过A作AF⊥BC,垂足为F,过点D作DH⊥AF,垂足为H.进而得出AF的长,再利用相似三角形的判定与性质得出AH的长即可得出答案.
试题解析:解:过A作AF⊥BC,垂足为F,过点D作DH⊥AF,垂足为H,
∵AF⊥BC,垂足为F,∴BF=FC=BC=40cm.
根据勾股定理,得AF= =80(cm).
∵∠DHA=∠DAC=∠AFC=90°,∴∠DAH+∠FAC=90°,∠C+∠FAC=90°,∴∠DAH=∠C,∴△DAH∽△ACF,∴ ,∴AH=10cm,∴HF=(10+80)cm.
答:D到地面的高度为(10+80)cm.
练习册系列答案
相关题目