题目内容
【题目】如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.
(1)求证:四边形DBFC是平行四边形;
(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.
【答案】(1)见解析 (2)2
【解析】
(1)证BD∥CF,CD∥BF,即可得出四边形DBFC是平行四边形;
(2)由平行四边形的性质得出CF=BD=2,由等腰三角形的性质得出AE=CE,作CM⊥BF于F,则CE=CM,证出△CFM是等腰直角三角形,由勾股定理得出CM=,得出AE=CE=,即可得出AC的长.
(1)∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.
∴BD∥CF,CD∥BF,
∴四边形DBFC是平行四边形;
(2)∵四边形DBFC是平行四边形,
∴CF=BD=2,
∵AB=BC,AC⊥BD,
∴AE=CE,
作CM⊥BF于F,
∵BC平分∠DBF,
∴CE=CM,
∵∠F=45°,
∴△CFM是等腰直角三角形,
∴CF=CM
∴CM=,
∴AE=CE=CM=,
∴AC=2.
练习册系列答案
相关题目