题目内容
【题目】如图,二次函数的图象与轴交于点,与x轴负半轴交于B,与正半轴交于点,且.
(1)求该二次函数解析式;
(2)若是线段上一动点,作,交于点,连结当面积最大时,求点的坐标;
(3)若点为轴上方的抛物线上的一个动点,连接,设所得的面积为.问:是否存在一个的值,使得相应的点有且只有个,若有,求出这个的值,并求此时点的横坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在一个的值,使得相应的点有且只有个,这个的值为16,此时点的横坐标为4或.
【解析】
(1)先根据点A、C的坐标得出OA、OC的长,再根据相似三角形的判定与性质求出OB的长,从而可得点B的坐标,然后根据点B、C的坐标可设二次函数解析式的交点式,最后将点A的坐标代入求解即可得;
(2)先根据点B、C的坐标求出BC的长,从而可得面积,设,则,再根据相似三角形的判定与性质可得面积,然后利用面积减去面积可得面积,最后利用二次函数的性质即可得;
(3)先利用待定系数法求出直线AC的解析式,设,从而可得,再分和两种情况,分别求出S与m之间的函数表达式,然后利用二次函数的性质求出S的取值范围,找出符合条件的S值即可.
(1)
又
,即
解得
点B的坐标为
由可设二次函数的解析式为
将代入得:
解得
则二次函数的解析式为
故二次函数的解析式为;
(2)
设,则
,即
由二次函数的性质可知,当时,取得最大值,最大值为
故当面积最大时,点的坐标为;
(3)设直线AC的解析式为
将得,解得
直线AC的解析式为
设
因为点为轴上方的抛物线上的一个动点
所以
由题意,分以下两种情况:
①当时
如图1,过作轴于点,交于,则
则
由二次函数的性质可知,当时,S随m的增大而增大;当时,S随m的增大而减小
则此时S的最大值为,最小值为
即有
②当时
如图2,过作轴于点,交延长线于,则
则
由二次函数的性质可知,当时,S随m的增大而减小
则此时S的最大值为,最小值为
即有
由二次函数的图象与性质可得如下结论:
当时,在范围内没有相应的点,在范围内相应的点有1个,即共有1个
当时,在范围内相应的点有2个,在范围内相应的点有1个,即共有3个
当时,在范围内相应的点有1个,在范围内相应的点有1个,即共有2个
当时,在范围内没有相应的点,在范围内相应的点有1个,即共有1个
由此可知,当时,相应的点有且只有个
在范围内,当时,
在范围内,当时,,解得或(不符题设,舍去)
综上,存在一个的值,使得相应的点有且只有个,这个的值为16,此时点的横坐标为4或.