题目内容
【题目】如图,AB是⊙O的直径,C,D是⊙O上两点,且,连接OC,BD,OD.
(1)求证:OC垂直平分BD;
(2)过点C作⊙O的切线交AB的延长线于点E,连接AD,CD.
①依题意补全图形;
②若AD=6,,求CD的长.
【答案】(1)详见解析;(2)①详见解析;②
【解析】
(1)根据等弧所对的圆心角相等可得∠COD =∠COB,由等角对等边的性质可得OD = OB,继而由线段垂直平分线的判定可求证结论;
(2)①根据题意补全图形即可;
②先根据切线的性质和题(1)可知DB∥CE,进而可得∠AEC=∠ABD,继而在Rt△ABD中,推出BD=8,AB=10,然后推导出DF=4,CF=2,继而在Rt△CFD中,由勾股定理即可求出CD的长.
(1)证明:∵
∴∠COD =∠COB.
∵OD = OB,
∴OC垂直平分BD.
(2)解:①补全图形,如图所示.
②∵CE是⊙O切线,切点为C,
∴OC⊥CE于点C.
记OC与BD交于点F,由(1)可知OC垂直BD,
∴∠OCE=∠OFB=90°.
∴DB∥CE.
∴∠AEC=∠ABD.
在Rt△ABD中,AD=6,,
∴BD=8,AB=10.
∴OA= OB=OC=5.
由(1)可知OC平分BD,即DF= BF,
∴BF=DF=4.
∴.
∴CF=2.
在Rt△CFD中,.
【题目】某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:
会员卡类型 | 办卡费用/元 | 有效期 | 优惠方式 |
A类 | 40 | 1年 | 每杯打九折 |
B类 | 80 | 1年 | 每杯打八折 |
C类 | 130 | 1年 | 一次性购买2杯,第二杯半价 |
例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为( )
A.购买A类会员卡B.购买B类会员卡
C.购买C类会员卡D.不购买会员卡
【题目】张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:
①2019年10月至2020年3月通话时长统计表
时间 | 10月 | 11月 | 12月 | 1月 | 2月 | 3月 |
时长(单位:分钟) | 520 | 530 | 550 | 610 | 650 | 660 |
②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为( )
A.550B.580C.610D.630